

Synthesis and Biological Activity of L-Tyrosine-based PPARγ Agonists with Reduced Molecular Weight

Kevin G. Liu,^{a,*} Millard H. Lambert,^a Andrea H. Ayscue,^a Brad R. Henke,^b Lisa M. Leesnitzer,^a William R. Oliver, Jr.,^b Kelli D. Plunket,^a H. Eric Xu,^a Daniel D. Sternbach^b and Timothy M. Willson^{a,*}

^aNuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, NC 27709, USA ^bMetabolic Diseases Drug Discovery, GlaxoSmithKline, Research Triangle Park, NC 27709, USA

Received 15 July 2001; accepted 13 September 2001

Abstract—A series of PPAR γ agonists were synthesized from L-tyrosine that incorporated low molecular weight N-substituents. The most potent analogue, pyrrole (**4e**), demonstrated a K_i of 6.9 nM and an EC₅₀ of 4.7 nM in PPAR γ binding and functional assays, respectively. Pyrrole (**4e**), which is readily synthesized from L-tyrosine methyl ester in four steps, also demonstrated in vivo activity in a rodent model of Type 2 diabetes. © 2001 Elsevier Science Ltd. All rights reserved.

Peroxisome proliferator-activated receptors (PPARs) have been the subject of intense research following the discovery of their physiological roles in the regulation glucose and lipid homeostasis. PPAR γ is the molecular target for the thiazolidinedione (TZD) class of insulin sensitizing antihyperglycemic agents. Two of the TZDs, pioglitazone and rosiglitazone (Fig. 1), are currently approved for treatment of Type 2 diabetes. 1

We recently reported a series of potent tyrosine-based PPARy agonists, which are exemplified by farglitazar and GW7845 (Fig. 1).2 Although these compounds contain an asymmetric center, the more potent S-enantiomers are conveniently synthesized from naturallyoccurring L-tyrosine.2 Unlike the TZDs,3 the tyrosinebased PPARy agonists do not undergo racemization in vivo.² Our initial studies² suggested that an N-benzophenone or N-benzoate group was essential for PPAR γ activity. As part of an ongoing program to develop new L-tyrosine-based PPARy agonists, we decided to reevaluate the structural requirements for the tyrosine N-substituents. In addition, a goal of the current study was to employ the X-ray crystal structure of PPAR γ^4 in the design of molecules with reduced molecular weight compared to the first generation compounds (Fig. 1), while maintaining robust PPARy agonist and in vivo antidiabetic activity.

The X-ray crystal structure of farglitazar bound to PPAR γ showed that the benzophenone group was inserted into a lipophilic pocket, while the tyrosine–NH and benzophenone C=O formed an intramolecular hydrogen bond.⁴ This intramolecular hydrogen bond reduces the basicity and the polarity of the tyrosine amino group.

Through a process of model building into the PPARγ crystal structure,⁵ alternative *N*-substituents were selec-

Figure 1. Structures of PPAR γ agonists.

^{*}Corresponding authors. Fax:+1-919-315-0430; e-mail: kliu@kalypsys.com (K. G. Liu); tmw20653@gsk.com (T. M. Willson).

ted that would add a small lipophilic substituent while mimicking some of the effects of the intramolecular hydrogen bond present in the benzophenone analogue. Compounds were built within the PPARy binding site by removal of the benzophenone group from farglitazar, and growth of alternative substituents onto the tyrosine nitrogen, using the MVP program.⁵ The growth process, which generates multiple energy-minimized conformations, was carried out twice, once within the protein binding site and once in aqueous solution. A basicity adjustment was applied to the calculated binding energy to account for the fraction of the molecule in the neutral ionization state at pH 7.6 The model building predicted that pyrrole, morpholino and n-alkyl derivatives would bind to PPAR γ effectively at pH 7. Other derivatives, such as amide, piperidine and dimethylpyrrole, were predicted to be less potent due to their polarity, basicity or poor steric fit, respectively.

The synthesis of tyrosine analogues **3a–e** and **4a–f** is depicted in Scheme 1. Mitsunobu reaction between commercially available *t*-butoxycarbonyl (BOC)-protected L-tyrosine methyl ester **1** and 5-methyl-2-phenyl-4-oxazolylethanol⁷ using triphenylphosphine and diisopropylazodicarboxylate in toluene was followed by removal of the BOC protecting group with 4M HCl in dioxane to afford the amine hydrochloride **2** in 70% overall yield. Intermediate **2** was derivatized on the tyrosine nitrogen to provide the targeted set of analogues following saponification with LiOH (Scheme 1). *N*-Alkyl groups (**3a–b** and **4a**) were introduced by reductive alkylation with the requisite

Scheme 1. Reagents and conditions: (a) 5-methyl-2-phenyl-4-oxazolylethanol, PPh₃, DIAD, PhCH₃, 79%; (b) 4M HCl in dioxane, 100%; (c) **3a**: (i) 2-nitrobenzenesulfonyl chloride, Et₃N, CH₂Cl₂, 98%; (ii) MeI, Cs₂CO₃, DMF, 33%; (iii) thiophenol, K₂CO₃, acetonitrile, 62%; **3b**: CH₃CH₂CHO, NaBH(OAc)₃, CH₂Cl₂; **3c**: CH₃COCl, Et₃N, CH₂Cl₂, 98%; **3d**: MeSO₂Cl, Et₃N, CH₂Cl₂, 46%; **3e**: 2-chloropyrimidine, Na₂CO₃, EtOH, 15%; **4a**: HCHO, NaCNBH₃, HOAc, CH₃CN, 26%; **4b**: 1,5-dibromopentane, Na₂CO₃, EtOH, 42%; **4c**: 2-bromoethyl ether, Na₂CO₃, EtOH, 60%; **4d**: 1,4-dibromobutane, Na₂CO₃, EtOH, 47%; **4e**: 2,5-dimethoxytetrahydrofuran, HOAc, NaOAc, 61%; **4f**: hexane-2,5-dione, HOAc, 36%; (d) LiOH, THF, H₂O, MeOH, 90–100%.

aldehydes. N-Cycloalkyl groups (4b-d) were introduced through alkylation with dibromoalkylating agents. Compounds 3c and 3d were prepared through acylation and sulfonylation, respectively. The pyrimidine compound 3e was generated by aromatic nucleophilic substitution of 2-chloropyrimidine. Reaction of the free amine from 2 with 2,5-dimethoxytetrahydrofuran or with hexane-2,5-dione in acetic acid provided the pyrrole compounds 4e and 4f, respectively (Scheme 1). Presence of sodium acetate in the reaction mixture was found to greatly accelerate pyrrole formation and to be crucial for high yields. Unfortunately, significant racemization (up to 10%) occurred when the pyrroles were formed in acetic acid in the presence of sodium acetate as determined by chiral HPLC. Gratefully, use of a biphasic reaction conditions reported by Jefford⁸ led to pyrrole formation without racemization (Scheme 2). Saponification with aqueous LiOH in dioxane or THF provided enantiomerically pure carboxylic acids. The enantiomer of 4e was also synthesized from D-tyrosine. Use of pyrrole as a primary amine protecting group was first introduced by Bruekelman.⁹ Pyrroles have been shown to be stable to strong bases, nucleophiles, and to brief contact with strong acids. Consistent with these reports, compounds 4e and 4f are stable to aqueous LiOH, acidic workup, and storage at room temperature. Notably, structurally related racemic pyrroles have been claimed to show in vivo antidiabetic activity. 10

Compounds 3a-e and 4a-f were screened against the three human PPAR subtypes in binding and cell-based reporter assays (Table 1). The details of both the binding^{2,11} and the functional assays² have been reported previously. The compounds (3-4) displayed subtypeselectivity for PPARγ over PPARα and PPARδ. However, the selectivity ranged from 3.5-fold with alkyl amine (3b) to > 700-fold with pyrrole (4e) in the cellbased assay. Variation in the polarity of the N-substituent was found to have a dramatic effect on the PPARy activity. As predicted, the acetyl (3c) and sulfonyl (3d) groups were weak PPARγ agonists with EC₅₀ > 1 µM, suggesting that polar functionality is poorly tolerated. The N-propyl amine (3b) and N,N-dimethyl amine (4a) were more potent than the corresponding mono-methyl analogue 3, showing that increased lipophilicity was beneficial.

Scheme 2. Reagents and conditions: (a) 2,5-dimethoxytetrahydro-furan, 1,2-dichloroethane, H₂O, 77%; (b) LiOH, dioxane, H₂O, 98%.

Table 1. Activity of tyrosine-based PPAR agonists

Compd	\mathbb{R}^1	\mathbb{R}^2	Binding affinity, K_i (nM) ^a			Functional activity, EC550 (nM)b		
			PPARα	PPARγ	PPARδ	PPARα	PPARγ	PPARδ
Pioglitazone			_	630	_	_	580	_
Rosiglitazone			_	120	_	_	43	
Farglitazar	H	2-(COPh)Ph	490	1.1	1200	450	0.34	
GW7845	H	2-(CO ₂ Me)Ph	1100	3.7	1200	3500	0.71	
3a	H	Me	_	2100	_	_	5000	
3b	H	<i>n</i> -Pr	72	52	_	830	240	
3c	H	MeCO	_	2600	_	_	3500	
3d	H	MeSO ₂	_	620	_	_	2600	
3e	H	2-pyrimidine	1200	280	_	_	590	
4a	Me	Me	_	850	_	_	410	
4b	-CH2CH2CH2CH2CH2-		_	480	_	_	138	
4c	-CH2CH2OCH2CH2-		_	158	_	6900	24	
4d	-CH2CH2CH2CH2-		_	360	_	_	390	
4e	-CH = CHCH = CH-		560	6.9	2500	3600	4.7	3800
ent-4e	-CH = CHCH = CH-		2600	51	_	1300	20	_
4f	-(Me)CH = CHCH = CH(Me)-		_	980		_	710	

^aCompounds were assayed for their ability to bind to human PPAR ligand binding domains by scintillation proximity assay.^{2,11} The K_i value was calculated according to the equation $K_i = IC_{50}/(1 + [L]/K_d)$, where IC_{50} is the concentration of test compound required to inhibit 50% of the specific binding of the radioligand, [L] is the concentration of the radioligand used, and K_d is the dissociation constant for the radioligand at the receptor. ^bCompounds were assayed for agonist activity on human PPAR-GAL4 chimeric receptors in transiently transfected CV-1 cells as described; ² EC₅₀ = the concentration of test compound that gave 50% of the maximal reporter activity; all data are ±20% for n = 3; —inactive at 3 μM in the binding assay or 10 μM in the functional assay.

The basicity of the tyrosine nitrogen was a key factor that affected the potency on PPARy, with compounds designed to reduce the nitrogen basicity demonstrating improved potency in the binding and functional assays. Thus, the pyrimidine 3e had an EC₅₀ of 590 nM, while the morpholinyl derivative 4c was more potent than the isosteric cycloalkyl analogue 4b. The pyrrolidinyl compound 4d showed similar PPARy potency to its acyclic analogue 4a, but pyrrole 4e, which reduces the basicity of the tyrosine nitrogen, was a potent PPARγ agonist with EC₅₀ of 4.7 nM in the functional assay and a K_i of 6.9 nM in the binding assay. 2,5-Dimethyl pyrrole 4f was less potent than its unsubstituted analogue **4e**, most likely due to an unfavorable steric interaction with the receptor. Finally, pyrrole 4e (synthesized from L-tyrosine) was 10 times more potent at PPARy and 5 times more potent at PPARa than its enantiomer ent-4e (synthesized from D-tyrosine). The higher activity of pyrrole 4e, with the S-configuration, is consistent with the enantioselectivity of the first generation tyrosinebased compounds.²

The in vivo antihyperglycemic and antihyperlipidemic efficacy of 4e were evaluated in male Zucker diabetic fa/fa rats (n=6). When dosed orally at 10 mg/kg bid for 14 days, the pyrrole (4e) reduced fasting plasma glucose by 40%, and fasting serum triglycerides by 24%, while HDL-cholesterol was raised by 31% compared to vehicle-treated animals.

In summary, the pyrrole (4e, MW = 416) was identified as a potent L-tyrosine-based insulin sensitizer with significantly lower molecular weight than the 1st generation compounds farglitazar (MW = 546) and GW7845 (MW = 500). The low basicity of the pyrrole N-substituent in 4e may be key to its potent PPAR γ activity.

Acknowledgements

The authors would like to thank Melissa Lindsay and Manon Villeneuve for the chiral HPLC determination of enantiomeric purity for **4e**.

References and Notes

- 1. Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B. R. J. Med. Chem. **2000**, 43, 527.
- 2. Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.; Brown, K. K.; Cobb, J. E.; Collins, J. L.; Harrington, W. W., Jr.; Hashim, M. A.; Hull-Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.; Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.; Orband-Miller, L. A.; Miller, J. F.; Mook, R. A.; Noble, S. A.; Oliver, W.; Parks, D. J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. J. Med. Chem. 1998, 41, 5020.
 3. Parks, D. J.; Tomkinson, N. C. O.; Villeneuve, M. S.; Blanchard, S. G.; Willson, T. M. Bioorg. Med. Chem. Lett. 1998, 8, 3657.
- 4. Gampe, R. T., Jr.; Montana, V. G.; Lambert, M. H.; Miller, A. B.; Bledsoe, R. K.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M.; Xu, H. E. *Mol. Cell* **2000**, *5*, 545.
- 5. Lambert, M. H. In *Practical Application of Computer-Aided Drug Design*; Charifson, P. S., Ed.; Marcel Dekker: New York, 1997; p 243.
- 6. To correct for ionization of the amine at pH 7, $rt*ln[1+10^{(pK_a-pH)}]$ was added to the calculated binding energy, where rt=0.596 kcal at 300 K, and pK_a is the acidity constant for the basic amine.
- 7. Hulin, B.; Clark, D. A.; Goldstein, S. W.; McDermott, R. E.; Dambek, P. J.; Kappeler, W. H.; Lamphere, C. H.; Lewis, D. M.; Rizzi, J. P. *J. Med. Chem.* **1992**, *35*, 1853.
- 8. Jefford, C. W.; de Villedon de Naide, F.; Sienkiewicz, K. *Tetrahedron: Asymmetry* **1996**, 7, 1069.
- 9. Bruekelman, S. P.; Leach, S. E.; Meakins, G. D.; Tirel, M. D. J. Chem. Soc., Perkin Trans. 1 1984, 2801.
- Faller, A. WO Patent 9429302, 1994. Yanagisawa, H,
 Takamura, M., Fujita, T., Fujiwara, T. WO Patent 9737970, 1997.
 Nichols, J. S.; Parks, D. J.; Consler, T. G.; Blanchard,
 S. G. Anal. Biochem. 1998, 257, 112.